
Unified Stream Processing Raytracer
Gabriel Moreno-Fortuny ? Michael McCool

Computer Graphics Lab, School of Computer Science, University of Waterloo

Sh is a metaprogramming library that can dynamically
generate stream processing code for both GPUs and
CPUs [1]. We are extending the semantics of its stream
processing model. Simultaneously, we are attempting to
target both shared-memory and distributed memory par-
allel machines in addition to GPUs. The goal is to be able
to efficiently run the same algorithm on either a GPU, on
a single CPU, or on a parallel machine.

As a test application, we are developing a stream-based
implementation of a ray tracer. The goal is to enhance our
language to the point that a simple imperative expression
of the desired algorithm can be given while still mapping
to the multiple targets given above with high efficiency. In
addition, we plan to explore the construction of accelera-
tors for dynamic scenes and the use of arbitrary shaders
in ray-traced scenes. The latter goal is interesting because
it can exploit Sh’s capability to dynamically combine code
fragments as well as its capability for data-dependent ex-
ecution within the stream processing model.

RAYTRACER TESTBED

Real time ray tracing has already been demonstrated on
both distributed systems [3] and GPUs [2]. However,
these implementations were performed at a low level. We
are instead using ray tracing as a test case to drive the ex-
tension of the Sh language. Our prototype only ray traces
static scenes with a fixed Phong lighting model.

We are now exploring extensions that will permit the use
of arbitrary shaders on hit surfaces and dynamic scenes.
The former extension will exploit the capability of Sh to
build large stream programs by dynamically combining
several fragments. The second goal will explore the dy-
namic construction of accelerator data structures. Our
goal is a modular ray-tracing system that can itself be
used as a component of other systems.

We have developed a ray tracing algorithm that can be ex-
pressed using stream computations. We have taken Pur-
cell’s approach as a starting point. In our prototype, the
following steps are taken to generate a rendered image.
First an accelerator structure is created; we use a uniform
3D grid. We then generate rays. A bounding box test de-
tects if each ray actually hits the scene and at which voxel
it entered the accelerator grid. Once inside a voxel the
program checks for triangle intersections in that voxel. If
no hit is found, the voxel traverser advances the ray to the
next voxel in the grid. If a triangle is hit, then a shader
kernel which calculates the color of the pixel is evaluated.

A simplified version of the stream raytracer was compiled
to both a 2.66GHz P4 and a GeForce 6800. The GeForce
was approximately 20 times faster.

TRACER CODE

Below are the two most important functions of the ray-
tracer. The tracer code shoots light, shadow and reflection
rays. The intersector code traverses the accelerator grid
and reports hits.
ShColor3f RayTracer::tracer(ShPoint2f sc, ShPoint3f eye){

ShPoint3f inter;
ShColor3f scolor,color, C;
scolor = color = ShColor3f (0,0,0);
ShVector3f V, N, ray;
ray(0,1)=-sc(0,1); ray(2)=1.0; / / create eye ray
ray=viewMatrix | normalize(ray);
ShAttrib2f rn = ShConstAttrib2f (1,0);
ShAttrib1f shadows, r=REFLECTIONS, tracing, finished;
SH_DO{

ShColor3f lightcol;
SH_IF(shadows) { / / get light information

ShPoint3f lightpos;
getLightValues(srtf(0)-1, lightpos, lightcol);
ray=normalize(lightpos-inter); / / generate Light vector
eye=(inter + NEPSILON*N) + DISP*ray;
shadows-=1; / / decrease shadow counter

} SH_ENDIF;
ShAttrib1f l, uv, id; / / Check for an intersection
ShAttrib1f hit = intersector(ray, eye , l, uv, id);
SH_IF(tracing) { / / Tracing state

SH_IF(hit) {
inter = eye + l*ray; / / store intersection point
V = normalize(-ray); / / store view vector
ShTexCoord2f tc = i2tc(id); / / access normals, color..
rn(1) = m_reflect[tc]; / / ..and reflection coefficients
ShAttrib3f n0, n1, n2, c0, c1, c2;
readTables(tc, n0, n1, n2, c0, c1, c2);
C = barylerp(uv, c0, c1, c2); / / linear interpolation
N = normalize(barylerp(uv, n0, n1, n2));
tracing = 0; / / set state to Shadow
scolor = ShConstColor3f (0,0,0); / / initialize color
shadows = light_list.size(); / / initialize shadow counter

} SH_ELSE{
finished = 1; scolor = BACKCOLOR;

} SH_ENDIF;
} SH_ELSE{ / / Shadow State (obtain color)

scolor+=cond(hit,SHADOW,LIGHT)*shader(V,N,ray,C)*lightcol;
} SH_ENDIF;
SH_IF(!srtf(0)) { / / Accumulate color and reflection coefficients

color += rn(0)*scolor;
rn(0) *= rn(1);
color -= rn(0)*scolor;
SH_IF(r && rn(1)) { / / ..and check for reflections

ray = reflect(V,N);
eye = inter + DISP*ray;
r -= 1; / / decrease reflection counter
tracing = 1; / / set state to Tracing

} SH_ELSE{
finished = 1; / / if no more reflections, finish

} SH_ENDIF;
} SH_ENDIF;

} SH_UNTIL(finished); / / finished
return sat((1 - AMBIENT)*color + AMBIENT);

}

INTERSECTOR CODE

ShAttrib1f RayTracer::intersector(ShVector3f ray,
ShPoint3f eye, ShAttrib1f & l, ShAttrib1f &uv, ShAttrib1f &id){

ShAttrib3f step, tMax, tDelta;
ShPoint3f voxel, inter;
ShAttrib1f hit;
hit=rayBoxIntersect(ray, eye, inter); / / scene bounding box
SH_IF(hit) { / / if hit, prepare to traverse bounding grid

voxel = floor((inter - m_grid.gmin)/m_grid.dt); / / init voxel
voxel = pos(min(voxel, fillcast<3>(m_grid.gsize - 1.0)));
step=cond(ray != ZERO3F, ray/abs(ray), ZERO3F); / / step dir
ShAttrib3f SH_DECL(sptr)= step > ZERO3F; / / other vars
tMax=cond(ray != ZERO3F,
(m_grid.gmin+(voxel+sptr)*m_grid.dt-inter)/ray,INF3F);

tDelta=cond(ray!=ZERO3F,m_grid.dt/abs(ray),INF3F);
ShAttrib1f finished = 0; hit = 0;
SH_DO{ / / main traversing loop

ShAttrib2f tvptr; / / check current voxel
tvptr(0) = m_grid3D[lookup3d(voxel)];
ShAttrib2f tindex=cond(tvptr(0)>-1,i2tc(tvptr(0)),ZERO2F);
tvptr(1)=cond(tvptr(0)>-1,m_triangles[tindex],-ONE1F);
l = INF1F; / / set l to infinity
SH_WHILE(tvptr(1) > -1) { / / check all triangles in voxel

rayTriangleIntersect(ray, eye, tvptr(1), l, uv, id);
tvptr(0) += 1;
tvptr(1) = m_triangles[i2tc(tvptr(0))];

} SH_ENDWHILE;
hit = l < INF; / / if any triangle is hit, set hit to true
SH_IF(hit) { / / but first make sure its in current voxel

finished=hit=checkVoxelBound(eye, ray, l, voxel);
} SH_ENDIF;
/ / advance grid traversing variables.
traverseGrid(tMax, voxel, finished, tDelta, step);

} SH_UNTIL(finished);
} SH_ENDIF;
return hit;

}

CONCLUSION

This algorithm is reasonably efficient and robust but it is
dependent on an accelerator structure which must be pre-
computed. In the future we plan to exploit the fact that
in most applications of interest, most of the scene is static
with only a small number of dynamic objects. We will
use separate accelerators for the static and dynamic parts
of the scene, and a simple accelerator (such as a bound-
ing box hierarchy) for the dynamic parts of the scene.
Our preliminary mapping of this algorithm to a parallel
machine will replicate the scene database and accelerator
structure. More efficient and scalable implementations are
possible by partitioning the array holding the accelerator
structure and sorting stream records to processors by ar-
ray access addresses.

References

[1] Michael McCool, Zheng Qin, and Tiberiu S. Popa.
Shader metaprogramming. In Graphics Hardware,
pages 57–68, September 2002.

[2] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray trac-
ing on programmable graphics hardware. In Graphics
Hardware, pages 703–712, 2003.

[3] I. Wald, P. Slusallek, and C. Benthin. Interactive dis-
tributed ray tracing of highly complex models. In
12th Eurographics Workshop on Rendering, pages 277–
288, 2001.

